Dynamics of a deformable active particle under shear flow.

نویسندگان

  • Mitsusuke Tarama
  • Andreas M Menzel
  • Borge ten Hagen
  • Raphael Wittkowski
  • Takao Ohta
  • Hartmut Löwen
چکیده

The motion of a deformable active particle in linear shear flow is explored theoretically. Based on symmetry considerations, we propose coupled nonlinear dynamical equations for the particle position, velocity, deformation, and rotation. In our model, both, passive rotations induced by the shear flow as well as active spinning motions, are taken into account. Our equations reduce to known models in the two limits of vanishing shear flow and vanishing particle deformability. For varied shear rate and particle propulsion speed, we solve the equations numerically in two spatial dimensions and obtain a manifold of different dynamical modes including active straight motion, periodic motions, motions on undulated cycloids, winding motions, as well as quasi-periodic and chaotic motions induced at high shear rates. The types of motion are distinguished by different characteristics in the real-space trajectories and in the dynamical behavior of the particle orientation and its deformation. Our predictions can be verified in experiments on self-propelled droplets exposed to a linear shear flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Simulation Study on the Kinetics of Asphaltene Particle Flocculation in a Two-dimensional Shear Flow

In the current study, the kinetics of asphaltene particle flocculation is investigated under a shear flow through numerical simulation. The discrete element method (DEM) is coupled with computational fluid dynamics (CFD) to model the agglomeration and fragmentation processes. In addition, a coalescence model is proposed to consider the attachment of colliding particles. The changes in mean asph...

متن کامل

Deflection of a hyperbolic shear deformable microbeam under a concentrated load

Deflection analysis of a simply supported microbeam subjected to a concentrated load at the middle is investigated on the basis of a shear deformable beam theory and non-classical theory. Effects of shear deformation and small size are taken into consideration by hyperbolic shear deformable beam theory and modified strain gradient theory, respectively. The governing differential equations and c...

متن کامل

Collective dynamics of confined rigid spheres and deformable drops †

The evolution of linear arrays of rigid spheres and deformable drops in a Poiseuille flow between parallel walls is investigated to determine the effect of particle deformation on the collective dynamics in confined particulate flows.Wefind that linear arrays of rigid spheres aligned in the flowdirection exhibit a particlepairing instability and are unstable to lateral perturbations. Linear arr...

متن کامل

Simple Two Variable Refined Theory for Shear Deformable Isotropic Rectangular Beams

In this paper, a displacement-based, variationally consistent, two variable refined theory for shear deformable beams is presented. The beam is assumed to be of linearly elastic, homogeneous, isotropic material and has a uniform rectangular cross-section. In this theory, the beam axial displacement and beam transverse displacement consist of bending components and shearing components. The assum...

متن کامل

Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow.

The shear flow dynamics of reversible red cell aggregates in dense suspensions were investigated by ultrasound scattering, to study the shear disruption processes of Rayleigh clusters and examine the effective mean field approximation used in microrheological models. In a first section, a rheo-acoustical model, in the Rayleigh scattering regime, is proposed to describe the shear stress dependen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 10  شماره 

صفحات  -

تاریخ انتشار 2013